cs_notes
This notes was automatically generated by AI
ASU
ASU CSE365 - Fall 2022
ASU CSE466 - Fall 2021
CMU
15-213 15-513 Introduction to Computer Systems
15 418 Parallel Computer Architecture and Programming 2016 SP
CMU Intro to Database Systems 15-445 645 Fall 2022
Cambridge
Information Theory Pattern Recognition and Neural Networks
CrashCourse
Computer Science
DeepLearning_AI
Machine Learning Specialization by Andrew Ng
The_Deep_Learning_Specialization
1 Neural Networks and Deep Learning
2 Improving Deep Neural Networks Hyperparameter Tuning Regularization and Optimization
3 Structuring Machine Learning Projects
4 Convolutional Neural Networks
5 Sequence Models
HUJI
Nand To Tetris 1
Nand To Tetris 2
Harvard
CS50 s Introduction to Artificial Intelligence with Python 2023
Khan
Complex Variables and Functions
Partial Differential Equations
MIT
18 01 Single Variable Calculus
18 02SC Homework Help for Multivariable Calculus
18 06 Linear Algebra Spring 2005
6 0002 Introduction to Computational Thinking and Data Science Fall 2016
6 S081 Operating System Engineering
IAP 2023
Information Theory Pattern Recognition and Neural Networks
MIT 18 03SC Differential Equations Fall 2011
MIT 6 003 Signals and Systems Fall 2011
MIT 6 006 Introduction to Algorithms Spring 2020
MIT 6 033 Computer System Engineering Spring 2005
MIT 6 046J Design and Analysis of Algorithms Spring 2015
MIT 6 824 Distributed Systems Spring 2020
Missing Semester IAP 2020
Qiqi Wang-Numerical Methods MIT
numerical analysis
Stanford
CS110 Principles of Computer Systems Spring 2019
CS231n Convolutional Neural Networks for Visual Recognition
Convex Optimization I
Convex Optimization II
Mining Massive Datasets - Stanford University
Stanford CS224N Natural Language Processing with Deep Learning Winter 2021
Stanford CS224W Machine Learning with Graphs
Stanford CS229 Machine Learning
cs107 Programming Paradigms
cs144 Introduction to Computer Networking
UCB
CS61C Great Ideas in Computer Architecture
CS 162 Operating Systems and Systems Programming - Berkeley
CS 285 Deep Reinforcement Learning Fall 2022 UC Berkeley
CS 61B - Data Structures - Jonathan Shewchuk - UC Berkeley
EECS 20N - Structure and Interpretation of Signals and Systems - Babak Ayazifar - UC Berkeley
EECS 70 Discrete mathematics and probability theory
Introduction to number theory
UCB CS70 discrete Math and probability theory
UC Berkeley CS186 Intro to DB Systems Playlist
UC Berkeley CS 188 Introduction to Artificial Intelligence Fall 2018
UC Berkeley Data 100 Su19 Lectures
other
Algorithms Robert Sedgewick
CS106B Programming Abstraction in CPP
CS170 Spring 2020
Cryptography Lecture Series
Deep Learning for Computer Vision UMich EECS 498-007
washington
CSE 143 Spring 2021